转自微信公众号:俊德培优
1950 年,著名的图灵测试诞生,按照艾伦·图灵的定义:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。同一年,图灵还预言有创造出具有真正智能的机器的可能性。
《福布斯杂志》发表的人工智能编年体简史,时间跨度超700年,涵盖心理学、数学、哲学、艺术、计算机科学等学科领域与人工智能的发展息息相关的历史大事件。
人工智能第一春
1726年 英国小说家乔纳森·斯威夫特(Jonathan Swift)出版《格列佛游记》,他在书中描述了一台名叫“Engine”的机器,这台机器放在Laputa岛。斯威夫特描述称:“运用实际而机械的操作方法来改善人的思辨知识。”“最无知的人,只要适当付点学费,再出一点点体力,就可以不借助于任何天才或学力,写出关于哲学、诗歌、政治、法律、数学和神学的书来。”
1898年 在麦迪逊广场花园举行的电气展览会上,尼古拉·特斯拉(Nikola Tesla)展示世界第一艘无线电遥控船。按照特斯拉的描述,船只拥有“借来的思想”。
1914年 西班牙工程师莱昂纳多·托里斯·克维多(Leonardo Torres y Quevedo)展示世界上第一台可以自动下象棋的机器,不需要人类干预,机器可以自动下国际象棋。
1927年 科幻电影《大都会》(Metropolis)上映。在影片中,一位名叫Maria的农村女孩是机器人,她在2026年的柏林引起骚乱。这是机器人第一次出现在荧幕上,后来《星球大战》中的“C-3PO”受到它的启发。
1943年 沃伦·麦卡洛克(Warren S. McCulloch)和沃尔特·皮茨(Walter Pitts)在《数学生物物理学公告》上发表论文《神经活动中内在思想的逻辑演算》(A Logical Calculus of the Ideas Immanent in Nervous Activity)。这篇论文对后世影响巨大,它讨论了理想化、简化的人工神经元网络,以及它们如何形成简单的逻辑功能,后来诞生的计算机“神经网络”(以及最后出现的深度学习)受到它的启发,所谓的“模拟大脑”这一说法也来自于它。
1949年 埃德蒙·伯克利(Edmund Berkeley)出版《Giant Brains: Or Machines That Think》,他在书中写道:“最近出现许多消息,谈论的主题是奇怪的巨型机器处理信息,速度极快,技能很强……这种机器与大脑相似,由硬件和线缆组成,而不是血肉和神经……机器可以处理信息,可以计算、可以得出结论、可以选择,还可以根据信息执行合理操作。总之,这台机器可以思考。”
1950年 阿兰·图灵(Alan Turing)发表论文《Computing Machinery and Intelligence》,他在论文中谈到了“模仿游戏”这一概念,也就是广为人知的“图灵测试”。
1958年 专家在一份提案中首次提出“AI(人工智能,artificial intelligence)”这一术语,提案建议由10名专家组成小组,花2个月时间研究人工智能。这份提案是达特茅斯学院约翰·麦卡锡(John McCarthy)、哈佛大学马文·明斯基(Marvin Minsky)、IBM纳撒尼尔·罗彻斯特(Nathaniel Rochester)和贝尔电话实验室克劳德·香农(Claude Shannon)联合提交的。1956年7月和8月,讨论会正式举行,这次会议成为人工智能诞生的标志。
人工智能第二春
�1980年 日本早稻田大学研制出Wabot-2机器人,这是一个人型音乐机器人,可以与人沟通,可以阅读乐谱,还可以演奏普通难度的电子琴。
1981年 日本国际贸易和工业部向“第五代计算机”项目投入8.5亿美元,该项目只为开发出可以对话、翻译语言、解释图片、像人一样推理的计算机。
�1987年� 苹果当时的CEO斯卡利(John Sculley)在Educom发表主题演讲,谈到了“知识领航员”(Knowledge Navigator)的概念,他描述了一个诱人的未来:“我们可以用智能代理连接知识应用,代理依赖于网络,可以与大量数字化信息联系。”
1988年 IBM沃森研究中心发表《A statistical approach to language translation》,它标志着过渡的开始,以前我们采用的是基于规则的机器翻译概率法,它开始向“机器学习”转移,机器学习是以已知案例的数据分析作为基础的,而不是对手上任务的理解。IBM的项目名叫Candide,它可以成功在英语和法语之间翻译,这套系统以220万对句子作为基础。
马文·明斯基(Marvin Minsky)和西摩尔·帕普特(Seymour Papert)出版了图书《Perceptrons》,这本书1969年首次出版,1988年扩充后再版。两人解释了再版的原因:“AI领域的研究为何没有取得突破?因为研究人员不熟悉历史,老是犯一些前人已经犯过的错误。”
人工智能真正的春天
1997年� 赛普·霍克赖特(Sepp Hochreiter)和于尔根·施密德胡伯(Jürgen Schmidhuber)提出了LSTM概念(长短期记忆),今天的递归神经网络就是用这种方法开发的,它可以识别手写笔迹,还可以识别语音。
IBM研发的“深蓝”(Deep Blue)击败人类象棋冠军。
�2000年 �� MIT研究人员西蒂亚·布雷泽尔(Cynthia Breazeal)开发了Kismet,它是一个可以识别、模拟表情的机器人。
本田推出了ASIMO,它是一个人工智能拟人机器人,可以像人类一样快速行走,在餐馆内可以将盘子送给客人。
2004年 第一届DARPA自动驾驶汽车挑战赛在莫哈韦沙漠举行,可惜没有一辆自动驾驶汽车完成150英里的挑战目标。
�2009年 � � Rajat Raina、阿南德·马德哈迈(Anand Madhavan)和吴恩达(Andrew Ng)发表论文《Large-scale Deep Unsupervised Learning using Graphics Processors》,他们认为“现代图形处理器的计算能力远超多核CPU,GPU有能力为深度无监督学习方法带来变革。”
谷歌开始秘密研发无人驾驶汽车,2014年,谷歌在内华达州通过了自动驾驶测试。
2012年 � EFF DEAN 和 ANDREW NG 发布一个实验报告,他们向一个非常大的神经网络展示从 YOUTUBE 的视频中随机截取的1000万张未标记的图像,发现人工神经网络能够识别图像中的猫。
�2016年 GOOGLE DEEPMIND 的 ALPHAGO 在围棋对弈中打败世界围棋冠军李世石。
|